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A CLASS OF STABLE TRANSMISSION ALGORITHMS FOR VARYING USER MODELS
Michael Paterakis, Leonidas Georgiadis, and P. Papantoni-Kazakos
The University of Connecticut

Department of Electrical Engineering and Computer Science
Storrs, Connecticut 06268

ABSTRACT

We propose and analyze a class of stable transmission algorithms whose operation
is independent of the number of users in the system and the arrival process per user,
as long as the latter is i.i.d. The algorithms in the class are a combination of a
random 2cccss and 2 reecivation techniques, they are synchromous, and they are -
studied in the full sensing broadcast environment. For any finite number of independent
users in the system, and any i.i.d. arrival process per user, their throughput is one.
Given some i.i.d. arrival process per user, given some algorithm in the class, its
limit throughput, when the user population tends to infinity, is lower bounded by its
throughput in the presence of the limit Poisson user model. The latter throughput is
also attainable; it coincides with the limit throughput, when the users are Poisson.
Due to the above, it is concluded that the limit Poisson user model is an indispensable

vehicle in the study of the algorithms in the class.

This work was supported jointly by the National Science Foundation under the grant
ECS5-85-06916, and the U.S. Office of Naval Research under the contract N00014-85-K-0547.
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1. Introduction

We consider a broadcast packet radio network with independent and identical
users. We require that the time of the transmission channel be slotted, and that
transmissions be then synchronous (each packet transmission may only start at the
beginning of some slot). We assume ternary feedback per slot (empty versus success
versus collision), full feedback sensing by each user, and no propagation delays. We 1
also assume that a collision results in full destruction of all the involved packets;
thus, ctrancmission is then necessary. Given the above general descriptioa of the
overall system, we wish to provide multiplexing techniques, whose operation is independeng
of the number uf users in the network and of the arrival process per user (assuming
that the latter is i.i.d.), whose stability is guaranteed even when the nuuwoer of
users tends to infinity, and whose delay characteristics are uniformly good within their
stability region. In this paper, we propose and analyze a general class of such multi-
plexing algorithms, whose members attain throughput one for any finite number of users,
and are stable when the number of users tends to infinity. An important part of our
work corresponds to a concrete justification of the limit Poisson user model, as an

indispensable vehicle in the study of random access algorithms.

We assume that each one of the independent and identical users in the system has
the following characteristics; (i) His packet generating process is arbitrary i.i.d.,
with mean ) packets/slot, and finite second moment. (ii) The user possesses a buffer,
where he stores his nontransmitted packets on the first come-first serve basis. The
earliest stored arrival lies on the head of the buffer queue, and is called the head
packet in the queue,.

Time will be measured in slot units. The integers, T and t, will denote slot
indices, where slot T occupies the transmission interval (T,T4+1]. The ternary feed-
back corresponding to slot T, will be denoted Xops where x,

0, x.=1, and x_~c, represent

r T 1

respectively empty, versus success (busy with a single packet), versus collision slot T.
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We will assume that the system starts operating at time zero; that is, at time zero

the queue of each user is empty. A user is called active at time T, if his buffer
queue is nonempty at the beginning of slot T; that is, some arrivals in (0,T] are

then stored in the queue. It will be also assumed that at each time T, each user knows
the overall feedback history, X3 0<t<T-1.

2. The Class of Algorithms

Let the queues of all users be empty at the beginning of slot T-1. Then, at
time T each active user transmits his head packet, and a collision resolution process
begins. This process involves only the head packets of the active at T users, and the
initial contention among them is resolved via some random access algorithm (RAA),
whose general characteristics will be described below. At the time T above, a
collision resolution interval (CRI) starts. During its progress the users who were
inactive at T withhold transmissions, and only the packets that were queued at T
are transmitted. The CRI ends at the time T, when it is known by all users that all
the latter packets are successfully transmitted. Then, at time T +1 the next CRI
begins, with the transmission of the head packets of all the active at T '+l users.

Given some RAA, let T correspond to the starting point of some CRI. Then, the
algorithm operates as follows. Let t be some slot within the CRI, such that xt=1 and
xt_1+l. Then, the successful at t user reserves the channel, to sequentially transmit
all the packets which were stored in his queue at the beginning of slot T, while the
remaining users withhold transmissions. After all the above packets are successfully
transmitted, an empty slot, say t~, is allowed. Upon observing xt,=0, all users in

the system know that the transmissions by the successful at t user have ended. Then,

at time t +1, the collision resolution process among the head packets is picked up
agdin at the point where it was left (by resetting t =t and xt,=xt=]), and continues

as dictated by the RAA. As claimed before, the CRI clearly ends with the successful

transmissica of all the packets that were queued at time T. 1Tt is also clear that if

the CRI ends at T‘, then x..-=0 and XT’ 1=l. Regarding the RAA used by the algorithm,
I _
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we require that it be stable, and it possess the following general characteristics:
Let us assume that at some time instant t, the arrival interval (0,t”] ; t“<t has
just been resolved by the pure RAA. Then, the RAA examines next some new arrival
interval (t”,t"}, by first allowing all arrivals in it to transmit in slot t+l,
and resolves it completely before examining a new interval. Let Zk,d denote the
number of slots needed by the RAA to resolve the latter interval, given that
its length is d and that the number of arrivals in it is k. Let Ek denote the

number of slots needed to resolve a collision of multiplicity k. Then, for

<
st denoting stochastic deminance, the RAA is such that,

E{¢, .} = E{£ } L L, Eiﬂz } o= E{Ki} 8 L(z)

k,d k k k,d k
=2 (2) = -1
Limk "1, < [Timk L] +1<= (1.a)
koo ko
L= e ; ¥k (1.b)
k st "k+l ° :

We point out that the above conditions are satisfied by most stable RAAs. A
simple such RAA is Capetanakis' algorithm [1], both in its nondynamic and dynamic
forms. We note that in the presence of some RAA in the class considered here, the
earlier description of a CRI is consistent,

3. Analysis-The Finite User Population

We now proceed with the analysis of our class of algorithms, for the finite
user population, and the user model described in the introduction. The limit analysis,
when the user population tends to infinity, will be presented in section 4.

Consider one of the algorithms in the class (given some RAA as in section 2).
Let the system start operating at time zero, and let us consider the sequence (in
time) of the CRIs that are generally induced by the algorithm. Let Ci denote the
length of the i-th CRI, where i>1. Then, the first CRI corresponds to the empty

slot zero; thus, C1=1. In addition, the sequence {Ci ; 1<i<w} is clearly a Markov

- . s e e R ST o - R
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chain. Let Lk be as in (1), and let us also define the following quantities.

A -
Lia~ E(Cin | Cy=d} (2)

p,(k[d) : The probability that the number of active users at the
i beginning of the (i+l)-th CRI is k, given that Ci=d'

Let us assume that the number of users in the system is M<®, and let the packet
generating process per user be i.i.d., with mean X packets/slot and finite second
moment. Let Py denote the probability of zero arrivals within a single slot time

interval, «¢s induced by the above process. Then, we easily conclude,

M -
é 1M

d
Ly =L g~ Z":o L, pi(k[d) +Ad [1-p] g::O k p,(k[d) =

M
= 2 L p(k|d) +mMd (3)
k=0

; where,

dG-k) | _d k

p(k]d) = p (k]d) = () pg o] “)

We now express a theorem, whose proof is in the appendix.
Theorem 1

Given M<®, the sequence {Ci}i> of CRI lengths induced by the algorithm is

>1

clearly a Markov chain. We make it irreducible and aperiodic, by properly choosing

its state space. If MA<l, then the chain is also ergodic.

Let us now consider the packet arrivals in the system, as they evolve in time.
Let Dn denote the delay experienced by the n-th packet arrival, as induced by the
algorithm; that is, the time between the arrival of the packet and its successful

transmission. Let the sequence {Ti}i>l be defined as follows: Each Ti corresponds

to the beginning of gome slot, and T1=1. In addition, each Ti corresponds to the

ending point of a length-one CRI. Ti+l is then the ending point of the first after
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Ti unity length CRI.

Let Ri ; 1>0 denote the number of successfully transmitted packets in the time

interval (0,T, .]. Then, A, 4 R. -R. ; i>1 denotes the number of successfully
i+l i i i-1 -

transmitted packets in the time interval (Ti’Ti+1]’ where R0=O. The sequence
{Ai}izl is clearly a sequence of i.i.d. random variables; thus, {Ri}iio is a rencwal
process. In addition, the delay process {Dn}n>l induced by the algorithm is regenera-

tive with respect to the process {Ri}i>0’ and the distribution of Ai is nonperiodic,

for each i. The regenerative theorem in [2] then applies, in the following form:

If, A
2 EA) < b 530} <
A = E{A w,andW—EZi (5)
i=1
then, Di converges in distribution to a random variable Uw, and,
A -
D=E{Dm}=WAl (6)
n n
lim n'120_=1im i E{Z D,}=WA—l;w.p.l (7)
n>o i=1 * n-e i=1 1

We note that (7) holds even if the second moment of the packet generating process
per user is not finite., The latter property is necessary, however, for the satisfac-
tion of expression (6).

Due to the above, if we compute the exnected values A and W in (5), and show that
they are both finite, then, we can guarantee convergence (in distribution) of the
delay Di ; that is, existence of steady state. In addition, we can then compute the

expected per packet delay, as D = W A‘l. Note that, given M and A, we have,

>

A= MiH , where H £ E{T. -T,} ; i>1 (8)
i+] i -

Wir now express a theorem whose proof 1is in the appendix.
<heorem 2

Giiven *“7, let the packet generating process per user be i.i.d., with finite sccond
moment, and mean M. Let also MA<l. Then, the expected values A and W are both bounded,

and so is then the expected per packet delay D.

. . . . . SR WL SOV S Y W W U WY VY WS
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We note that given some specific RAA as 1in section 2, upper and lower bounds
on the expected per packet delay D can be computed, via methods as in [2].
Remark
Given M and A, the quantity AM é MA is called the input rate of the system.

n
Given M,A, and some multiplexing algorithm, let us define, p\1 é n 1 2: In, where
' i=1

In equals 1 if the n—-th slot is a success slot and it equals zero otherwise. Then,
.\, is called the output rate of the system. Let Di be the delay of the i-th
successfully transmitted packet, as induced by the adopied multiplexing technique,

and let Ds be the steady state delay. Given M,), and some multiplexing technique,

M

let us define:

U 2 suph, o

LD = sunlhy Ay = 0y)

2y & A2 D

\“( } = sup( v Py <o, w,p.l) (9)
Lk

AH(}) = sup()\?\1 : E{DS,M} < )

To this point,we have shown that if the multiplexing technique used is one of
our algorithms, and if the packet generating process per user is arbitrary i.i.d.,
then given any M we have,

* *
A (L) = .X\I(Z) =1 (10)

If in addition the second moment of the packet generating process per user is

finite, then,

* * *
) = () = A (%) =1 (1)
) N o
Thus, for either one of the quantities in {(9) being nsod s measnre of throughput,
it Is concluded that, for any number 4 of users, and anv i.i.d. picket yenerating
process per user that possesses {inite sccond moment, the thy saeheat of ey
Algoritim in our class 15 one. We can also then concTade

hu 0 e AR Al “iie A Ae - At in A ha AR At OGS AR SN S AR T
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Lim A (1) = lim X\ (2) = lim X, (3) =1 (12)
i‘ Moo Moo Moo
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*
We note that the quantity X“(J) in (9) represents the strongest definition of

throughput, and it is perhaps the most meaningful, since it implies finite expected
per packet delays. It is very important to point out that,
— —_ *
lim A (3) = lim sup(A_, : E{D_ _} < @)> ) (13)
Moo M Moo M s,M (&
; where, for XC denoting system input rate. we derine,

* A -
A 2 sup(A : lim E{D } < «) (14)
c s,M

c Mosco
— % * *
Therefore, lim XV(B) = 1, does not imply Ac =1. Yet, XC represents the meaningful
Mo
definition of throughput in the limit where the user population tends to infinity,

since it is then implied that the limit expected per packet delay is finite. We

*
will name XC, the limit throughput of the algorithm, at the specific arrival process

per user.

’

4. The Limit User Population

In this section, we analyze our algorithms in the limit, where the user population

tends to infinity. We maintain the user model presented in the introduction, and we
2 o
denote by A and 0~ the mean and the second moment of the per user i.i.d. packet generat-
ing process. As in section 3, we denote by p the probability of zero arrivals per
0

slot, as induced by the latter process. Given M users in the system, let us denote by
p,(k) the probability that k previously inactive users become active within a single

slot time interval. Then,

p (k) = (;:) po"'k(l,— < (15)

bl
o

Let us now allow M increase to infinity, and X simultaneouslv decrease, in the
following wiy, for some given % in (0,1):

tim 2 = 3 (16)

Yo
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v The following theorem is basically the Poisson theorem [4], where Py increases
. with increasing M.

Theorem 3

k
L (i) If lim H(l-po) = ¢ < ®, then lim p (k) = e © %T
- Moo Moo M .
4 -
p If the limit lim )I(I—po) does not exist, neither does the limit lim p (k).
S Moo Moo
b
tf (ii) If in addition to (16), it is also required that the mean of the limit distribu-
| tion be equal to the limit of the mean, then §=c.
a
[
- Theorem 3 states that independently of the arrival process per user (as long as
; it is i.1i.d.),1if it exists, the limit of the cumulative arrival process is Poisson.
[
h Lo
If for some given §, the conditions in part (ii) of the rheorem are imposed, then
the intensity of this Poisson process is §.

Let now CRAR be the name of some algorithm within the class described in section

%
2. Let this algorithm attain throughput ) (by every definition in (9)), in the presence
[ee]

of the limit Poisson user model (infinitely many independent and identical Bernoulli

users). For Lk as in (1), let us define:

(17)

*
>
et

(l+c)_1 , and A, = (1+)

1=

(3]

v where, as well known,

The main result of this section is then stated in the following theorem, whose
Nroot 15 presentso ] in subsection 4.1 below.
[heorea 4

Consider the user model in sectinn 1 and in the beginning of this section, where

- “o Let o the CRAR be nsed, and lev D .. be then defined as in section 3. Then,

RALY
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, . . 2
(i) If, as the number M of users increases, the quantities XA and ¢° decrease

so that,

lim M02 < o
Meroo

*
lim MA = § < ) ,
Moo 1

then,

lim E{D } < =

o SaM

(ii) Given the CRAR, and given Poisson users, let M\ = 4§ ; ¥ .

b4

*
Let also & > Az. Then,

lim E{D } = e
S, M

Moo 2

We note that the condition Kk < £ in (1) is only used in part (ii) of the

St k+1

theorem.

Remark

Due to theorems 3 and 4, the following important conclusions are drawn:

1. The limit Poisson user model is valid. For any i.i.d. arrival process per user,
it represents the only possible limit of the cumulative arrival process.

ro

Given some algorithm within the class in section 2, let X: be its throughput in the
presegce of the limit Poisson user model. Let k; be known with uncertainty; that
is, Ax£(g;,£7), for some constants €1<€7. Then, given any i.i.d. arrival process
per user, given that the second moment of the cumulative input process is finite,
the limit throughput Xé of the a1§orithm is lower bounded by €1. Furthermore, if

the users are Poisson, then, €1<Ag<€9. For many of the known algorithms, €5-€7 is
very close to zero.

The above conclusions provide a concrete justification of the limit Poisson user
model, as an important vehicle in the study of our algorithms. If in the presence of
*

the above user model, the throughput of some algorithm in our class is % , then, for

*
any vuanulative input rate in (0,} ), stability and good delay characteristics are

staranteed, iondependently of the number of users in the system, and independently

ot specitic i.i.d. arrival process per user.
ol Proof of Theorem 4
Consider the user model in the introduction, and some algorithm in our class,
) *
whose throughput in the presence of the limit Poisson user model is 3 . CGiven M

- A . - N L . . . .
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users in the system, let LN be the steady state probability that the Markov chain
{C'}i>l of CRI lengths is in state d, and let ﬂs \ be then the steady state CRI length.

] .
Let 0~ be as in part (i) of theorem 4. Given M, and given that the algorithm starts

at the end of a length-d CRI, let H N denote the expected number of slots needed to

d,’
the end of the first length-one CRI. Then, we express the following three lemmata,
whose proofs are in the appendix.

Lemma 1

e * -
If lim MA<A , then lim E{f_ }<=
oo {0 S,M
Lemma 2

— * _— —
If lim MA<A and lim M02<m, then lim E{ﬂz }<eo

Moo Moroo Mo  SoM
Lemma 3
e -1
If M3<1 , then H =T E{l <o 3 Wy
1,M 1,M S,M

The expected values E{Zs W} and E{Zz } are used to bound the expected value
)

L XS
EU U} in theo 1 4. Then, part (i) of the theorem follows from lemmata 1,2, and 3.

The specifics are shown in the appendix.

Let us now focus on part (ii) of theorem 4. Given M users in the system, given

gome algorithm in our class, let nd \ denote the steady-state probability defined
5!
in the besinning of this subsection, let En y denote the length of the n~th CRI, and
)
It ¢ denote the steady-state CRI length. Let us also define,
L N A .
1.y ¥ 1 2 ; where I Is some positive integer. (18)

Phert, W express two lemmata, whose proofs are in the appendix.
i PRASE +

Por oioisson asers in the system, and any algorithm in the class,

4 \ lll“,r.’
tost

. T

d
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Et: Lemma 5
' For Poisson users in the system, and any algorithm in the class,
’
o . lim w _ . . . ]
. (1) “i: 4,300 Ty that is, the limit converges for every d
M n
] o
ii) If, 1i d = < 1
- (ii) lim Z_: 4,700 E{ZS,J(M)} e (19)
o Moo d=1
I‘.. (o8] [ee]
o th i =
- en, lim z_: d “d,J(M) E d T (20)
[ Mo d=1 d=1
a8 In the proof of lemma 5, the resvlt in lemma 4 is used. Lemma 5 is finally

used to prove part (ii) of theorem 4. The latter step is included in the appendix.

5. Performance Evaluation of a Specific Algorithm in the Class

In this section, we study the performance characteristics of a specific simple

e M s A e g, S et et

A
' . | "
N

algorithm, which belongs to the class described in section 2. In particular, the
RAA used by the algorithm is either the nondynamic or the dynamic form of Capetanakis’

protocol [1]. In the former case, we name the algorithm CCRAR, while in the latter

Pagsi s suac s s & e

case we name it DCCRAR. 1In the presence of the limit Poisson user model, the respective

* *
throughputs, Aw(l) and Am(Z),of the above two forms of the algorithm are easily computed,
via simple modifications in the equations in [l], where the DCCRAR utilizes a length-A

initial arrival interval. It is found that:

Ty

: *
o A1) = 0.26
2 (21)
S *
A (2) = 0.31, for A=4
x &
. In addition, for both the CCRAR and the DCCRAR forms, the quantity )\,)—Xl in

vy

*

part (ii) of theorem 4 is practlically equal to zero. Thus, the throughputs Xm(l) and
*

/\’_D(Z) are attainable; when the users in the system are Poisson, the limit throughputs

* *
of the CCRAR and the DCCRAR are respectively equal to A (1) and A _(2).

We considered the operation of the CCRAR and the DCCRAR, in the presence of

Poisson users. For various numbers, M, of such users, and for various values of the

N
. . B . . .- d
R - o X . Lt
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system input rate, we computed upper and lower bounds, D(U) and D(L), on the corresponding
expected per packet delays D. In the computation of those bounds, we utilized the
methodology developed in [2]. We omit the specifics of this computation, to avoid
redundancy and presentation of tedious but routine expressions. The computed bounds

are included in tables 1 and 2, together with the corresponding expected per packet
delays induced by TDMA. We note that for the CCRAR, only upper bounds were computed,
because the computation of lower bounds presents analytical difficulties. From tables 1
and 2, we observe that for relatively high input rates, TDI{A is superior to CCRAR and
DCCRAR. As the number of users increases, lL.cwever, the delays induced by CCRAR and
DCCRAR remain uniformly lower than those induced by TDMA, for a high range of input
rates. When the number of users tends to infinity (for all practical purposes), so

do the expected delays induced by TDMA, while those induced by CCRAR and DCCRAR remain
bounded and uniformly good, for input rates in respectively (0, 0.26) and (0, 0.31).

We note that when the number of users is 256, the expected delays in tables 1 and 2

are practically the same with those induced when the limit Poisson user model is
present.

6. Conclusions

The algorithms in this paper are a combination of a random access and a reserva-
tion schemes. The head packets in each user queue are involved in collisions for
channel reservation, where those collisions are resolved by some random access
algorithm with general characteristics. The operation of our algorithms is independent
of the number of users in the system, and of the packet generating process per user,
as long as the latter is i.i.d. and posscsses finite second moment. In addition, when
the user population tends to infinity, the throughput of each algorithm in our class
is identical to that induced when the limit Poi:son user model is present.

We note that for any finite number of users, our algorithms attain the same
throughput as TOMA, while the operation of the latter depends on the number of users

in the system. Given a small number of users and high input rates, TDMA induces lower

o ot . R P S U ST U0 ST UL Sl U0 S0V VU0 U GO0 W WY WOU- Wy, SUW TOU SO W “OV="Ie S e Ve




‘
’

PN

L 7 2 Ben an ol S 0 AMEa S d P it

vy

-
[

TR N S

- v T R TRCT IS AnSe vaite b o iinn by <A A hac Ate ket Aha bl Aie f A L A L S o

~13-

delays than our algorithms do. However, for any arrival rate, as the user population
increases to infinity, so do the delays induced by TDMA, while the delays induced by
each algorithm in our class remain bounded and uniformly good within the corresponding
stability region. In contrast to pure random access schemes, the algorithms in our
class attain throughput one, for any finite number of users in the system. In contrast
to the ALOHA algorithm in [3], our algorithms are stable even when the user population
tends to infinity. Given any finite number of users, our class is also superior to

pure random access schemes, in terms of delays.
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M Input Rate D(L) D(1) D tor TDMA
—
4 | 0.050 4 0.16852E+01 | 0.170649E+01 0.210528+01 |
| & | 0.100 | & | 0.19654E+01 | 0.20530E+01 | 0.2°"22F+01 |
|l 4 | o0.150 | 4 | 0.24170E+01 | 0.26506C+01 | 0.5 .,09L+01 |
| & | o0.200 | 4 | 0.31962E+01 | 0.37294E+01 | 0.24999E+01 |
I & | 0.250 |l 4 | 0.47188E+01 | 0.59201E+01 | 0.36666E+01 |
| &4 } o0.300 | & | 0.87670E+01 | 0.11920E+02 | 0.38571E+01 |
[ 4 | 0.350 | 4 | 0.57818E+02 | 0.85730E+02 | 0.40769E+01 |
| 8 | 0.050 | 4 | 0.17117E+01 | 0.17317E+01 | 0.52105E+01 |
! 8 1 0.100 ] & | 0.20459E+01 | 0.21373E+01 | 0.544G4E+01 |
. | 8 | 0.150 | & | 0.26231E+01 | 0.28780E+01 | 0.57058E+01 !
- | 8 | ©0.200 | & | 0.37479E+01 | 0.43793E+01 | 0.59999E+01 |
.- | 8 | 0.250 | 4 | 0.653G42E+01 | 0.82228E+01 | 0.63333E+01 |
j? !l 8 | 0.300 | 4 | 0.21595E+02 | 0.29529E+02 | 0.67142E+01 |
w!l { 16 [ 0.050 | & | 0.17249E+01 | 0.17451E+01 | 0.94210E+01 |
f'< | 16 | 0.100 | 4 |} 0,20868F+01 | (G.2.#01E+01 | 0.98888E+01 |
3 | 16 | 0.150 | & ! 5.27205E+01 | 0.29954E+01 | 0.10411E+02 |
o | 16 | 0.200 |l & | 0.4u535E+01 | 0.47389E+01 | 0.10999E+02 |
b | 16 | 0.250 | 4 | 0.77353E+01 | 0.97453E+01 | 0.11666E+02 |
L.' | 16 | 0.300 | 4 | 0.46989E+02 | 0.61639E+02 | 0.12428E+02 |
@ e e
S | 32 | 0.050 | & | 0.17316E+401 | 0.17519E+01 | 0.17842E+02 |
o | 32 1 o0.100 | 4 | 0.21075E+01 |} 0.22019E+01 | 0.18777E+02 |
. | 32 1 0.150 | & | 0.27865E+01 | 0.30582E+01 | 0.19823E+02 |
A | 32 | ©0.200 | &4 | 0.42219E+401 | 0.49373E+01 | 0.20999E+02 |
tic' | 32 | 0.250 | & | 0.84884E+01 | 0.10700E+02 | 0.22333E+02 |
‘ll ] 32 ] 0.300 | & | 0.89691E+02 | 0.12301E+03 | 0.23857E+02 |
BT T e e e e o e - = . i = o = = = S b = = = = e e e e e
¢
& | 64 | 0.050 | &4 | 0.17349E+01 | 0.17555E+01 | 0.34684E+02 |
8 | 64 | 0.100 | & | 0.21180E+401 | 0.22128E+01 | 0.36555E+02 |
:; | 64 | 0.150 ] & | 0.28151E+01 | 0.30897E+01 | 0.38647E+02 |
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128 | 0.300 | 4 | 0.30306E+03 | 0.41598E+03 | 0.92428E+02 |
256 | 0.050 | &4 | 0.17374E+401 | 0.17577E+01 | 0.13573E+03 |
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f256 | 0.150 | & | 0.28368E+01 | 0.31137E+01 | 0.15158E+402 |
. {256 | ©0.200 | & | 0.43789E+01 | 0.51221E+01 | 0.16099E+03 |
P 256 | 0.250 | 4 | 0.92579E+01 | 0.11675€E+02 | 0.17166E+03 |
MRS l256 | 0.300 I 4 | 0.49121E+03 | 0.67432E+03 | 0.18385E+03 |
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s Table 2
t;'_f-: Expected per Packet Delavs
b Poisson Users - The DCCRAR Algorithm
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Appendix

Proof of Theorem 1

From (1), we have Lk<w; ¥k<e, Then, from (3) we easily conclude that,

lim d 1 L, = W (A.1)
d—>00

which implies the following: Given €>0, there exists do, such that:

L, < (MA\ +€)d ; ¥d>d (A.2)
d — — 0

Let N denote the set of natural numbers, and let us define,

It
B = max(0,L,-(M\ + €),...,L -k(M\ + ¢),...,L -(d -1Y(M\ + €))
1 k do—l o
Then, due to (A.2) we conclude,
Ld < (MM +€e)d + B ; ¥deN (A.3)

E{C b =B < +e) Elc ) +B 5 wal  (A.4)

Let x 2 M\ 4 e<l. Then, (A.4) gives,

then we conclude that the chain {Ci},

k k
k 1-a k 1
E{Ck+l} <a E{Cl} + By = o +B I
<1+ e ow (A.5)
1-a ’ )

Since, given any £€>0, such that M\A + €<1, we have that E{Ck+1} <y

co . . Py
i>1 is ergodic, if MA<1,

Proof of Theorem 2

t ime

Let us consider some CRI, and let there be some packet arrival within

interval that corresponds to its length. Let w be the length between

instant of the packet and the end of the CRI. Let O be the length between

point

of the CRI, and the time instant when the successful transmission of

just e¢nds. Let us then define.

vk,

the
the
the

the

arrival
ending

packet
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a.2

. wd : The sum of the lengths w of all packet arrivals within some CRI,
. given that the length of the CRI is d.

. -

2yt The sum of the lengths 6 of all packet arrivals within some CRI,
given that the length of the CRI is d.

p(£]|d) : Given that some CRI has length d, the probability that the next
CRI has length £.

hd : The length between the end of some CRI, and the end of the first after
that length-one CRI, given that the length of the former is d.

5 = ﬂww E
LN
Co A .

i” Wy The cumulative delay of all the packets that are successfully transmitted
’Lu within the time interval that corresponds to hd.
3
: . Y = . = = =
g = Blygd vwy =©Elw}, m =Elh}, 2z, = Elz}
;{_' From the operation of the algorithms, we then easily conclude that *the following
r &
L o equations hold.
H, = > 2 p2ld)y +2 H, p(£]d) (A.6)
- =1 £=2
L .
W, =2z, +¥,+ 2 W, pe|d) (A.7)
d d d 5t

L e o 4 o

Using the theory of infinite dimensionality linear systems, we can express

the following theorem, whose proof is identical to the proofs of the parallel theorems
in [2], and is omitted.
Py Theorem A

Let MA<l. Then, the system in (A.6) has a nonnegative solution, which is also

Ty vy Y v
\ N

unique within the class of quadratically bounded sequences. Let in addition the

°® packet gencrating process per user have finite second moment. Then, the system in

El g

(A.7) has a nonnegative solution, which is also unique within the class of quadratically

L an ou o 4

bounded sequences.

Since W in (5) and H in (8) are respectively w] and H,, the conditions in

theorem A aiso gnarantee boundness of H and W.
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Proof of Lemma 1

Clearly, E{¢ } = 2: dm . On the other hand, from (A.5) we conclude
s,M a-1 d,M

that for every M and for MA<1l, there exists by <> suchk that, E{Ck}<bM ; ¥k. Then,

by Fatou's lemma we conclude that,

E{¢ .} <b <e ; ¥M, and M\ = 38<1 (A.8)
s,M M
Now, from the condition lim k_l Lk < o in (1), we conclude that there exist finite
koo
positive constants ¢ and p, such that lim k_l Lk = ¢, and such that, for every €>0,
koo
we have,
L, < (ct+e) ktp ; ¥ k (A.9)

Substituting (A.9) in (3), and for Po being as in section 4, we obtain,

Ly < (c+e+1)MAd + p (A.10)

Thus,

20 e o]
E{ZS,M} = dgl Ly Ty < (c+e+1)MA d{;ldﬂd’M +p =

i

(c+e+1)MA E{Es } +p (a.11)

oM

; where MA\ = §. Provided that 6<(c+€+1)_1, (A.11) gives,

E{ZS M} jvp[l—(c+€+l)MA]_l = p[l—(€+c+1)6]~l ; WM, ¥e>0:

: 6<(cter1) T (A.12) |
\
Then, :
Tie -1 e I -1 ‘
lim E{2 M} < p[l-(c+1l) 71 ;5 if lim MA < (c+l) !
M0 Ss Moo
Proof of Lemma 2
Let p(k|d) be as in (4), let L, and Léz) be as in (1), and let us define,
2
1,(52) = E{C'l.+1 | C. = d} ; ¥i. Then, given M, the inequality (A.14) below can bhe

easily established, where po is as in section 4, and where,

PP PR T S O S PR RN, TN S VUK I 0, SUG YU, ", "W o Y h.[,...{“j




M(1-pg) < M (A.13)

_'I M -1 M
: K

L;z) <y L&) pila)y + Oz[l—pg] 3 kp(kla) +

k=0 k 0
d -1 M
+ 2Md [1-p;1 Y kL, p(kld) (A.14)
0 k
k=0
At the same time, we clearly have,
2 (2 -~ 2
REgC Y= > lé )nd . 3 o« Ty (A.15)
. d=1 * d=1 v
_— - i
(i) From the condition lim k Li“)<w in (1), and for MA<]l, we can show, in parallel
k-

to the proof of theorem 1, that there exists finite constant b“, such that

> ‘:l(_'
E{Ck. b

y ¥k, ¥M. Then, by Fatou's lemma we conclude,
I ) A}
AR . T sy . Wy o= f.
EL(S‘H! bH s ¥ M oand M 1 (A.16)
N, o --- =2 () . .. C .
(ii) From the condition lim k Lk o, we conclude that there exist finite positive
Kk~ N S e
constants t,., and v, such thar, lim = ° 1,7 = 1, and such that for everv £>0
[
ko
we have,
() 2
Il\ (= )k™ 45k + ¥k (A.17)

Substituting the bounds in (A.9) and (A.17), in inequality (A.14), we obtain,

() S IO T+ B 118+ M 4 2ed 0]

‘|

+ 2dMy + v o W20 (A.18)

In addition, we have,

d .

-p (1= M(1- . AL19

1 Py (1 pO) d , 1(1 po) 13 (A.19)
From (A.18) and (A.19), we obtain,

(2) 2 2 , ?
Ly7 7 () Tlebe#2e [dT 4 MY [P0 4 20d 4y 5 V0 (A.20),
-1/2

Due to (1.;1)‘_3 Co0r ML = 8 o [o4t2e] ,oand expressions (AU and CACM Cin conjuct on

with (A.12), sive,
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a.s

-1

,2 ) 2 ) 2
E{LS %} <[1-8§°[e+a+2¢) ] [8 (B+Mo

+ 2) E{ZS M} +v]

?

-1 -1
< [1-8%(eHar2e) ] (S[84M0T + 2] [1-(c#1)8]  + Y} 5 ¥M, ¥e>0

(A.21)

From lim M02<w , from (A.16), and from (A.21), we conclude that, there exists
Mo
some bounded constant B, such that,

2
< ;¥
S,M} < B

E{L

Prooi of Lemma 3
As in [2], it can be shown that there exist positive bounded constants

JM and BH, such that,

< + ; ; WM
Hd,M—uMd BM ;o ¥d o

Then, from (A.8), we have that, E{Es %} < bM < o 3 ¥M, and
i e

»
bS]

! < + <
Hy 2 Hym Tgn S Oy E{KS,M} By < Opby 4 B

<o
2 ;s WM A.22
& M ( )

In addition,

m Dy pRIOT, -
M d "d.M T 5 M d,M
>
|

d=1

(el oo
= {7 3 { - +
Ele, )+ ) Hy peeld) my = EE ) ; LI
t=2 2=2
= iy % - . .y
ELC, y tfy = Ty y oy 3 W

Since H“ is finite by (A.22), the result follows from the latter equation.
Proof ot Theorem 4 - Part (i)

Consider the quantities defined in the proof of theorem 2. Given M users, we

will denote the arbitrary such quantity B] \ (instead of Bd)' For M\ <1, using the
d,!

resualt in bemma 3, and following the same approach as in its proof, we obtain,

- - -
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- D = [My B ; 7 4+ .
,q E - [ SO ] 2: [Zd,M nh)” d. (A.23)

- 'v=‘—7;r'r‘l .-

L
E
’

T
a o

r

LA S AR
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. , - ) 2 .
i where for ¢ and p as in (A.Y), for Py as in section 4, and for 07 as in theorem 4,

we have,

T eMliepg) M7+ p M+ M(l—po)(Moz)] d (A.24)
S S
S S S EO IS (A.25)

substituting expressions (A.24) and (A.25) in (A.23), we obtain,

-1

. o -1 2
B{D b ik E o 27h - +
g Ut ELE I {2 ™+ eM(1-py) M E{ES’M}
C 0 (e (D] ELE 1) (A.26)

Using the inequalities in (A.19) and lemmata 1 and 2, we conclude from (A.26) that, for

. * I P)
1im My =4 and lim M3 <@, there exists some bounded constant Yy, such that,
N e + N
M M
I N , o e
LtLS w Y 5 ¥M. Then, lim E{US M} <o follows.
9t -

M ”

We note, that from (A.23), the following inequality evolves easily:

v (A.27)

IS >
s,M —

Proof of Lemma 4

Given some algorithm in the class, let (k denote the length in (1), as induced

by the RAA of the algorithm. Let us define,

PLUk Ny ¢ Given M users, given N total arrivals, the probability that k users are
M .
active

+

P (kton) = 9o P (1]N)

i=u

PH(N d) o Given M ousers, given some CRT of length d, the probability that N total
) arrivals occur within the arrival interval that corresponds to the CRI.

we tirst state and prove a proposition:
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v Proposition A
X rruposition .
b .
- iven Polsson users, we have,
r ey e e L u -
v PM(k\“L“\) - p‘l}{(k,;t?r\) DVt (1\.28)

Proot

—d

v

R R B e cas Lo P el

M per cell.  Then, (A.28) follows trivially.

pr(£0=0) PH(Old) =0; x=0
N oty - — | -
kr(\(n,}f:(‘Ln—l,.*‘[ d) PM(Old) P‘(ﬂoix) +
min(M,N)

X
+3 P\{(.‘Jld) > Py (K
N1 k=1

When the users are independent and Poisson, the probability Pw(kith) is
the same with the probability of placing N objects in at most t cells of an M-cell

capacity butfer, when each of the N obiects 1s placed independently and with probability

We can now express the following equation, for x being a nonnegative integer.

N) Pr(fk < x-N) ;3 x>l

(A.29)

Due to (A.28), due to £, — ¢ : ¥k in (1), and from (A.29), we easilyv conclude,
kK st kt+l Y
Pre <x !y =d) >Pr (¢ <x L =) 1 ¥x,¥d
EREUY S I ) zPr( n,2M — “n—],,EM ' o

we now note that P\&(kf»}jN) and Pr(ﬁk;x—t\') are both decreasing with increasing N.

Then, in conjuction with (1.b) we conclude that Z P“(k!N)Pr(('L\‘x-N\ is also decreasing
Y. A no

n
with increasing N, In addition, I’\f(N'?‘f!d) is decreasing with inecreasing Jd. Duoe to
the above, we observe that Pr(d \{"xfl'" " 1:‘1) is decreasing with increasine d, as well.
n,M- n, M-
et s oW oot e g ize , 3 — AT gome ot Ty Dy
it g w Dvpothesize that (:1,"" ;['"n e t oy e o, Ihen, ™M b )
rrie 13 ={Y+ Prer =
Z I n,M 1 or n, M b
: + £
Ty 3 ~
- E P . ' i i . 1
- a+l, 0N a, i,
e e e e e e e e e PN anadnidineimedsdmidinmibnedial
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‘he last inequalircy
induction, we obtain the

Pr(d X
( n,M - )

Proot of Lemma 5

(i) Due to the result in

Since 7 s bounded

1,J3(M)

Pr(t . <x ]
‘*2: STntl,2M T T

1.5
o T Pr(E Ly =d) s Pr([n+l,

follows by hypothesis. Since {

result in the lemma; that is,

Pr t’ wa : ¥y
Pr( n N ) X

3 Lt

lemma 4, we easily conclude that,

from below, we alsu conclude,

lim ¢ = 7, <w A.30
Voo 1,J(M) 1 ( )
trom lemma 4, we also conclude,
<+1 x+1
2: R vy Z: T N
= Jd,J(M) = d,J(M+1) (A.31)
Due to (A.31), we have,
v+l X
lin 7 lim (7 + ki )y =1
‘o d; 4,00 o XHLLIC) gl d,J(M)

Due to (AL32), and by induction, we easily conlude that 7

Tim 7 =T <o i ¥y (
- . » ‘
e X J(M) X
Cii) ¢or oarbitrary n, we have,
- n

2
A7

i

IEERTEY

d=n+1 d=1

Tt s ftow issame that Z 71 = y-l. Then, we have
4
d=1
n
LR cleen o, taere exists M such that, }: -
0’ d, 70
=1
\ ) v A n[l=0C.+ ¥ oM o M.
o Lot [1-( Yo 9

] ey
\

e h e Tt aaimtatalmiaielaislalalalalaiaia’atlaialalan

2 d aLa0n S nl1-2, IRIRIEEE

)

oM =¥

={ =1, and by

1M 1,0

> .
TLaen 2T 3o

(A.32)

converges, for everv
x,J{M) *

AL3

] AL

that ¢iven S0 such that
e EM o MO Then,

Since the above holds for
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arbitrary o, we then conclude, lim Z d TTd 10M) = w, Thus, 1f (19) holds, then
Mo d=] Te
E; ©, <1 presents a contradiction.  Therefore, subject to (19), we have:
g=1 7

> =1 (A.35)

e to (AL3D) and (A.35), we conclude,

Z Z Tegon G Ym v (A.36)
d=n d=n

Applying (AL36), we obtain,

an X0 [es) oo (o)
- ) - = d s WM (A.37)
E‘:l : SRR ngl d};n ﬂd’J(M) = ng d§1 “d dgl “d ‘

noaddition,

Z s )(“)" Z d I(I)— z=: dJ(M+l)—Z=:

S d=
Z Fraen 2;1 T S bl;: dz-:l Mg = z=: "0

Fromo (AL 37y and (AL38), we conclude (20).

ot ot Theorem 4 - Part (ii)

— S|
ihe condition 1im k L [,k <o in (1), implies lim k Lk <o, The latter means
@ ko 1
Tiuit there cxists some finite positive constant N, such that, lim k Lk =n. Thus,
ko
I Yore et 'r:”f' "}, such that,
oo ) o= k() (A.39)
) T ICRARNE S RN P (A.40)
. K
L
S - (A4
. . e — aai el eateond At o Auntintenduiniitsndustundntihendiintiitdd
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We note that n<c, where ¢ is as in (A.9). We now state the following theorem.
Theorem A
Consider Poisson users. If there are M such users in the system, let AM be the

Poisson intensity per user. As M varies, let the product Mlq remain fixed and equal

to §. If, for € as in (A.41),

* —_—
§ > X\ +&, then lim E{£ M} = w,
Moo S

Proof

We will prove the theorem by contradiction. Let lim E{ZS M}<oo , and let the
Moo ’
quantities Ld and p(kld) in (3) and (4), be denoted instead Ld M and pM(kId), to

indicate explicitly the number of users in the system. Then, considering (A.39)

and (A.40), and for Pp in (4) equal to exp{—XM} here, when the user population is M,

we obtain,
JM)

_ -8d
éd
- 0 [l-exp{-yryt) (4.41)

; where J(M) is as in (18).

Let us now select Cl : n(d—cl)>1. Then, there exists o, such that,

5d d
l—L)(p{— W > (5—-2;1) m)— ; ¥ d o Oidi(l J (M) (A.42)

Then, (A.41) gives:

i ad
Ld,J(M) > n(é—Cl)d - 8[l-exp{- j?gy}] (A.43)
and thus,
aJ (M) g

= v - bY - _§.(_1.«
Flegent 200 & Yasen T 32% Ty, 300 1mexet= gy H
e n(ier VIE(D _3 , By cown o 0d

e ’1)““‘:;,J(M)} dgumﬂd‘d,J(M)J 8 (g Ta,30M) [1-expl J(M)”

(A.44)

P VO O L R N S S O - S . SyU- . .
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But,

o

lim ) dm <Tim D, dm, o ¥ (A.45)
Moo d=aJ (M) +1 d,J (M) M=o d=c d,J()

In addition, since by hvpothesis lim E{€
rv[—-)(x)
that, given v>0, there exists c(v), such that,

} <o, and from lemma 5,we have
s, J(M)

< 5 A
lim égi dnd,J(M) v, ¥ > cv) (A.46)

From (A.45) and (A.46), we coaclude,

o
Tim 2 dr =0 (A.47)
Mroo d=aJ(M)+1 d,J ()
and thus,
[e o]
) : = .48
lim 2: dwd,J(M) 0 (A )
Moo d=0J(M)+1
It can be seen that,
. laa} (Sd fo )
lim z: a1 [l-exp{- jfiy}]g_ 2: Ty s ¥N
Moo d=] d=N+1

Therefore, due to (A.47), we conclude,

, 8d
;i: ;g% Wd,J(M) [1-exp{- ETEY}] =0 (A.49)

hen, from (A.44), (A.48), and (A.49), we obtain,

im E°C P> on(i-n im E .50
im BLC g 2 n(i-7,) lim L{ZS’J(M)} (A.50)

M Mo

it ainee m(i-7.) > 1, (A.50) contradicts the hypothesis. Thus, lim E{fs Hf =

1 MM‘) *

i tiee sront oot the theorem is complete.

et the inequalitv in (A.27), we have,

A ,—1 . N H
Vim0 0 2 lim Ei¢ WP (A.51)
Mo Ty Moo AR
. . *
e to tALOT)Y and theorem A, we conclude that for anv S>3, 1im E{D b= o and the
2 5,.M
= Moo e

pront ot opart (ii) in theorem 4 is now complete.
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